92 research outputs found

    Segmenting white matter hyperintensities on isotropic three-dimensional Fluid Attenuated Inversion Recovery magnetic resonance images: Assessing deep learning tools on a Norwegian imaging database

    Get PDF
    An important step in the analysis of magnetic resonance imaging (MRI) data for neuroimaging is the automated segmentation of white matter hyperintensities (WMHs). Fluid Attenuated Inversion Recovery (FLAIR-weighted) is an MRI contrast that is particularly useful to visualize and quantify WMHs, a hallmark of cerebral small vessel disease and Alzheimer's disease (AD). In order to achieve high spatial resolution in each of the three voxel dimensions, clinical MRI protocols are evolving to a three-dimensional (3D) FLAIR-weighted acquisition. The current study details the deployment of deep learning tools to enable automated WMH segmentation and characterization from 3D FLAIR-weighted images acquired as part of a national AD imaging initiative. Based on data from the ongoing Norwegian Disease Dementia Initiation (DDI) multicenter study, two 3D models-one off-the-shelf from the NVIDIA nnU-Net framework and the other internally developed-were trained, validated, and tested. A third cutting-edge Deep Bayesian network model (HyperMapp3r) was implemented without any de-novo tuning to serve as a comparison architecture. The 2.5D in-house developed and 3D nnU-Net models were trained and validated in-house across five national collection sites among 441 participants from the DDI study, of whom 194 were men and whose average age was (64.91 +/- 9.32) years. Both an external dataset with 29 cases from a global collaborator and a held-out subset of the internal data from the 441 participants were used to test all three models. These test sets were evaluated independently. The ground truth human-in-the-loop segmentation was compared against five established WMH performance metrics. The 3D nnU-Net had the highest performance out of the three tested networks, outperforming both the internally developed 2.5D model and the SOTA Deep Bayesian network with an average dice similarity coefficient score of 0.76 +/- 0.16. Our findings demonstrate that WMH segmentation models can achieve high performance when trained exclusively on FLAIR input volumes that are 3D volumetric acquisitions. Single image input models are desirable for ease of deployment, as reflected in the current embedded clinical research project. The 3D nnU-Net had the highest performance, which suggests a way forward for our need to automate WMH segmentation while also evaluating performance metrics during on-going data collection and model retraining

    Paramagnetic liposomes as thermosensitive probes for MRI-guided thermal treatment: In vitro feasibility studies

    Get PDF
    In this work the potential of thermosensitive paramagnetic liposomes for in vitro temperature monitoring during radiofrequency heating has been assessed. Two thermosensitive liposome formulations with different phase-transition properties were investigated. Temperature-dependent spin-lattice (T 1) relaxivity measurements were performed at 0.24 T. Magnetic resonance imaging was performed at 2 T in liposome-containing phantom models and T 1 relaxation rates (R 1) were quantified as a function of temperature. Independent temperature measurements were performed using both thermocouple and magnetic-resonance-based methods (proton resonance frequency and diffusion-based thermometry). The relaxometric measurements showed that the T 1 relaxivity increased from low values (about 0.3 s -1mM -1 at 35 °C) to about 4 s -1mM -1 when the temperature approached and exceeded the phase-transition temperature (T c) of the liposome preparations. These data correlated well to the imaging data where an increased signal intensity was observed on T 1-weighted images at temperatures above T c. The derived R 1 maps reflected the measured liposomal temperature sensitivity and temperature quantification was possible on the basis of the measured linear temperature versus R 1 correlation in the transition range of the liposomes. The studies have therefore shown that thermosensitive paramagnetic liposomes exhibit the required temperature sensitivity to allow for an accurate mapping of the temperature changes in an in vitro imaging model. © 2008 Springer-Verlag

    A Piglet Model for Detection of Hypoxic-Ischemic Brain Injury with Magnetic Resonance Imaging

    Get PDF
    Munkeby BH, de Lange C, Emblem KE, Bjørnerud A, Kro GAB, Andresen J, Winther-Larssen EH, Løberg EM, Hald JK. A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol 2008;49:1049–1057

    Mathematics and Medicine: How mathematics, modelling and simulations can lead to better diagnosis and treatments

    Get PDF
    Starting with the discovery of X-rays by Röntgen in 1895, the progress in medical imaging has been extraordinary and immensely beneficial to diagnosis and therapy. Parallel to the increase of imaging accuracy, there is the quest of moving from qualitative to quantitative analysis and patient-tailored therapy. Mathematics, modelling and simulations are increasing their importance as tools in this quest. In this paper we give an overview of relations between mathematical modelling and imaging and focus particularly on the estimation of perfusion in the brain. In the forward model, the brain is treated as a porous medium and a two compartment model (arterial/venous) is used. Motivated by the similarity with techniques in reservoir modelling, we propose an ensemble Kalman filter to perform the parameter estimation and apply the method to a simple example as an illustrative example.acceptedVersio

    ExploreASL: An image processing pipeline for multi-center ASL perfusion MRI studies

    Get PDF
    Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus on improving standardization and reproducibility of its acquisition and quantification. In a community-wide effort towards robust and reproducible clinical ASL image processing, we developed the software package ExploreASL, allowing standardized analyses across centers and scanners. The procedures used in ExploreASL capitalize on published image processing advancements and address the challenges of multi-center datasets with scanner-specific processing and artifact reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. To facilitate collaboration and data-exchange, the toolbox follows several standards and recommendations for data structure, provenance, and best analysis practice. ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and ASL image processing and quality control, and finally preparing the results for statistical analyses on both single-subject and group level. We illustrate ExploreASL processing results from three cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for neurodegenerative disease. We show the reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions, and its effects on the quantification of gray matter cerebral blood flow. ExploreASL facilitates the standardization of image processing and quality control, allowing the pooling of cohorts which may increase statistical power and discover between-group perfusion differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, trials, and practice

    ExploreASL: an image processing pipeline for multi-center ASL perfusion MRI studies

    Get PDF
    Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus on improving standardization and reproducibility of its acquisition and quantification. In a community-wide effort towards robust and reproducible clinical ASL image processing, we developed the software package ExploreASL, allowing standardized analyses across centers and scanners.The procedures used in ExploreASL capitalize on published image processing advancements and address the challenges of multi-center datasets with scanner-specific processing and artifact reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. The toolbox adheres to previously defined international standards for data structure, provenance, and best analysis practice.ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and ASL image processing and quality control, and finally preparing the results for statistical analyses on both single-subject and group level. We illustrate ExploreASL processing results from three cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for neurodegenerative disease. We show the reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions, and its effects on the quantification of gray matter cerebral blood flow.ExploreASL facilitates the standardization of image processing and quality control, allowing the pooling of cohorts to increase statistical power and discover between-group perfusion differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, trials, and practice

    ExploreASL: an image processing pipeline for multi-center ASL perfusion MRI studies

    Get PDF
    Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus on improving standardization and reproducibility of its acquisition and quantification. In a community-wide effort towards robust and reproducible clinical ASL image processing, we developed the software package ExploreASL, allowing standardized analyses across centers and scanners. The procedures used in ExploreASL capitalize on published image processing advancements and address the challenges of multi-center datasets with scanner-specific processing and artifact reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. To facilitate collaboration and data-exchange, the toolbox follows several standards and recommendations for data structure, provenance, and best analysis practice. ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and ASL image processing and quality control, and finally preparing the results for statistical analyses on both single-subject and group level. We illustrate ExploreASL processing results from three cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for neurodegenerative disease. We show the reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions, and its effects on the quantification of gray matter cerebral blood flow. ExploreASL facilitates the standardization of image processing and quality control, allowing the pooling of cohorts which may increase statistical power and discover between-group perfusion differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, trials, and practice

    Paramagnetic liposomes as thermosensitive probes for MRI-guided thermal treatment: In vitro feasibility studies

    No full text
    In this work the potential of thermosensitive paramagnetic liposomes for in vitro temperature monitoring during radiofrequency heating has been assessed. Two thermosensitive liposome formulations with different phase-transition properties were investigated. Temperature-dependent spin-lattice (T 1) relaxivity measurements were performed at 0.24 T. Magnetic resonance imaging was performed at 2 T in liposome-containing phantom models and T 1 relaxation rates (R 1) were quantified as a function of temperature. Independent temperature measurements were performed using both thermocouple and magnetic-resonance-based methods (proton resonance frequency and diffusion-based thermometry). The relaxometric measurements showed that the T 1 relaxivity increased from low values (about 0.3 s -1mM -1 at 35 °C) to about 4 s -1mM -1 when the temperature approached and exceeded the phase-transition temperature (T c) of the liposome preparations. These data correlated well to the imaging data where an increased signal intensity was observed on T 1-weighted images at temperatures above T c. The derived R 1 maps reflected the measured liposomal temperature sensitivity and temperature quantification was possible on the basis of the measured linear temperature versus R 1 correlation in the transition range of the liposomes. The studies have therefore shown that thermosensitive paramagnetic liposomes exhibit the required temperature sensitivity to allow for an accurate mapping of the temperature changes in an in vitro imaging model. © 2008 Springer-Verlag
    corecore